Note on star-operations and semistar-operations
نویسندگان
چکیده
منابع مشابه
A Note on the Cancellation Properties of Semistar Operations
If D is an integral domain with quotient field K, then let F̄(D) be the set of non-zero D-submodules of K, F(D) be the set of non-zero fractional ideals of D and f(D) be the set of non-zero finitely generated D-submodules of K. A semistar operation ? on D is called arithmetisch brauchbar (or a.b.) if, for every H ∈ f(D) and every H1, H2 ∈ F̄(D), (HH1) ? = (HH2) ? implies H 1 = H ? 2 , and ? is ca...
متن کاملNote on Star Operations over Polynomial Rings
This paper studies the notions of star and semistar operations over a polynomial ring. It aims at characterizing when every upper to zero in R[X] is a ∗-maximal ideal and when a ∗-maximal ideal Q of R[X] is extended from R, that is, Q = (Q ∩ R)[X] with Q ∩R 6= 0, for a given star operation of finite character ∗ on R[X]. We also answer negatively some questions raised by Anderson-Clarke by const...
متن کاملLocal–global Properties for Semistar Operations
We study the “local” behavior of several relevant properties concerning semistar operations, like finite type, stable, spectral, e.a.b. and a.b. We deal with the “global” problem of building a new semistar operation on a given integral domain, by “gluing” a given homogeneous family of semistar operations defined on a set of localizations. We apply these results for studying the local–global beh...
متن کاملNote on the Star Operations over Polynomial Rings
This paper studies the notion of star and semistar operations over a polynomial ring. It aims at characterizing when every upper to zero in R[X] is a ∗-maximal ideal and when a ∗-maximal ideal Q of R[X] is extended from R, that is, Q = (Q ∩ R)[X] with Q ∩R 6= 0, for a given star operation of finite character ∗ on R[X]. We also answer negatively some questions raised by Anderson-Clarke by constr...
متن کاملThe semistar operations on certain Prüfer domain, II
Let D be a 1-dimensional Prüfer domain with exactly two maximal ideals. We completely determine the star operations and the semistar operations on D. Let G be a torsion-free abelian additive group. If G is not discrete, G is called indiscrete. If every non-empty subset S of G which is bounded below has its infimum inf(S) in G, then G is called complete. If G is not complete, G is called incompl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics
سال: 1996
ISSN: 1883-4345,0579-3068
DOI: 10.5036/bfsiu1968.28.5